http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20150086957-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e71c17ec6e47dd48a6dd4f316d2c0fb5
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J20-28085
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J20-267
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J20-285
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C04B24-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C09D163-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J20-28076
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C04B14-02
filingDate 2014-01-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_865e2eb0c37c530d51dd23e19403b287
publicationDate 2015-07-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-20150086957-A
titleOfInvention Method for manufacturing of ground organic monolith particles and the ground organic monolith particles thereby
abstract The present invention relates to organic monolith powder and a preparation method thereof. More specifically, the method includes the steps of: preparing a mixed solution by mixing a functional monomer, a crosslinking monomer, and a solvent and removing the oxygen in the mixed solution (step 1); mixing a pore inducer having the molecular weight of 20 to 1,000 thousands and a polymerization initiator in the mixed solution to initiate a polymerization reaction (step 2); and separating the organic monolith in the mixed solution having the polymerization reaction in the step 2. According to the present invention, the organic monolith powder preparation method uses the pore inducer having the molecular weight of 20 to 1,000 thousands to form the mezzo-sized pores and total pore volume of the mezzo-size. The present invention can increase the material transfer rate by forming the macro pores fitted near the monolit surface instead of the inside of the macro pores, obtains the most densely filled structure, increases the charging efficiency by using the monolit shape to increase the flow rate and power of the charging liquid, thereby obtaining the high separation efficiency similar to that of C18-bonded 5 μm silica when the chromatography is used in the stationary phase.
priorityDate 2014-01-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20060110031-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2005530905-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2007154081-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101116566-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2006126387-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6342
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID193422
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449005228
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415871245
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413398556
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414875128
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86637086
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419539811
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID18940
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID420795214
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23448326
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID18539538
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID125468
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10907
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419589952
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14265
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415730828
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16387
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID83797
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452195115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24693
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411932836
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62556
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID420245121
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451019872
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7148
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8041
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID887
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419474097
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450637603
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6850715
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558502
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID66171
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559502
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11251
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419097000
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425064323
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419514448
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412446806
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7515

Total number of triples: 69.