http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20070101350-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_33b011e77b33662b8bf1f2ff2de7b661
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J9-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J37-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J17-066
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J11-38
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J61-09
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J61-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J37-32018
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J65-046
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J65-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J1-025
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01J37-32596
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01J65-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01J11-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01J61-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01J37-32
filingDate 2006-01-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7a24ce949868046c8c261af9b7bd4c21
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_77b782b808d31dc96221403bdd808c2f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0dde12e3ea360c47036d290c7bba07cc
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_89302536eb450e5fc16fb021a80373e6
publicationDate 2007-10-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-20070101350-A
titleOfInvention AC-excited microcavity discharge device and fabrication method
abstract Disclosed are a microcavity discharge device and a method for fabricating the device array thereof. Devices are fabricated by stacking dielectrics 1020 and 220 on the first conductive layer or substrate 210 and 1010. The second conductive layer or structure is coated on the dielectric layer. In some devices, microcavities 1040 and 212 are created to penetrate through the second conductive layer or structure and the dielectric layer. In another device, the microcavity penetrates through the first conductive layer. The second conductive layer or structure along with the inner surface of the microcavity is covered with a second dielectric layer. The microcavity is then filled with discharge gas. When a time-varying potential of appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. Since the conductors are sheathed to protect the conductors from degradation due to exposure to the plasma, these devices can exhibit an extended lifetime. Some of the devices are flexible and the dielectrics can be chosen to act like a mirror.
priorityDate 2005-01-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24404
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559532

Total number of triples: 29.