http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20040051382-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a73001be058b1be08906131f050bb7bf
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_562ffecf919444fc8929ba04804aada8
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-64
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B25-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82B3-00
filingDate 2002-12-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0ce6085bc820a6c1ad7c81fc20f0257c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_202b4bd954846ee25003e3136fe1203c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d104979d886fa0f4e245867e4083766f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a49f6b7160815168f52fc337aa34cfa8
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_eac9142799709b5fddc53060c136a34e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_99d252b6b6d8bcac3786d4405dd4d74a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_92eb43313cf95401d9d4f2879882fa77
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e9e76afd4ccc74b9414b7f3f9d393131
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9f10eaf6e367c44a2883e1fda248976e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_16d970260aba9c854e11730f348a74c1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5166b0232916109967edcd0b52b09dca
publicationDate 2004-06-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-20040051382-A
titleOfInvention Synthesis of Hydroxyapatite Composite Nanopowder Using Co-precipitation
abstract The present invention is a method for producing apatite hydroxide composite nano powder using a pore precipitation method,n n n (a): mixing apatite hydroxide solution with a zirconia solution stabilized by preventing brittleness and improving abrasion resistance; (b): coprecipitation of apatite hydroxide crystals and zirconium crystals from the mixed solution of step (a); And (c): crystallizing the gel state precipitated in step (b) and crushing the obtained crystals into nano-sized particles.n n n According to the above structure, it is possible to prepare a hydroxide nano-apatite composite nano powder for coating Ti-6Al-4V alloy having excellent fracture toughness and wear resistance by a simple process. In addition, when calcium is added in a non-chemical equivalent amount, the problem of phase separation due to thermal decomposition during high temperature crystallization may be solved.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110512107-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-110512107-B
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-103466581-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-100845560-B1
priorityDate 2002-12-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451420605
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453327643
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458437476
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448032965
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159374
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID129731051
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557046
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452498775
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448736378
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID427801
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23993
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447730362
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23169389
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID161939
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID427801
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22472390
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6093208
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453854503
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62395
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26251
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID961
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450922353
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559568
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454273629
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5460341
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO01945
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14923
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454461350
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411550719
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559505
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24540
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707785
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1061
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453777766
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14778
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159283

Total number of triples: 69.