http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20030040605-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_ea0650893830ea9b7b699212d44e6235
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12R2001-865
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12G3-022
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N1-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N1-185
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12H1-063
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N1-16
filingDate 2001-11-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4c28ebbe5ff543810613220952e389b8
publicationDate 2003-05-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-20030040605-A
titleOfInvention An Ethanol-tolerant Strain, Saccharomyces cerevisiae SE211 and The Process For Manufacturing Rice Wine Using This Strain
abstract The present invention relates to a yeast strain and a method for preparing sake using the same, wherein the yeast strain according to the present invention is an isolated Saccharomyces cerevisiae SE211, and the method for producing sake according to the present invention. Is characterized by using the strain.n n n By using the strain according to the present invention and the method for producing sake using the same, the efficiency of fermentation can be improved by providing a yeast strain resistant to ethanol in the preparation of sake. In addition, in the production of cheongju by applying a parallel fermentation method and a compromise method, it is possible to provide a yeast strain excellent in osmotic pressure resistance that can solve the problems caused by high initial sugar concentration. In addition, in addition to the ethanol resistance and osmotic resistance as described above it can provide excellent yeast with heat resistance and oxidation resistance. In addition, by producing sake using the excellent yeast as described above, the fermentation rate and fermentation efficiency are increased by preventing the inhibition of yeast growth by osmotic pressure, ethanol, heat and pH, and in particular, the efficiency of fermentation by parallel fermentation method and compromise method. Maintaining high can reduce the use of soup for saccharification to improve flavor, reduce the emission of sake lees to solve ethanol-containing waste disposal problems, and reduce the time and cost of pre-culture of yeast.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20150098740-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20150113435-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-100768566-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20220028431-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-100767383-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-100863158-B1
priorityDate 2001-11-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO60087
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO74254
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100148922
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419509992
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4530
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP69328
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCD8Q9M3
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP42042
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP23176
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5395
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP14804
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3117
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22832
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419533768
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID8972
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP69327
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22861
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP26989
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ03045
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP08019
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4530
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4932
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP04065
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP0DN29
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0HJE2
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07683
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29760
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31260
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID232714
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419488561
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29761
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4932
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP36914
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP08017

Total number of triples: 57.