http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-102183670-B1

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A23V2300-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A23V2002-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A23V2300-14
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61P1-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A23L33-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61K36-48
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A23L33-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61K36-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61P1-16
filingDate 2018-03-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-11-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-11-26-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-102183670-B1
titleOfInvention Process for preparing alcoholic fatty liver relaxation composition using Moringa oleifera and composition thereof
abstract The present invention, the first step of drying Moringa leaves as a main material; A second step of pulverizing Moringa leaves to generate powder and drying it again; A third step of first extraction by reacting the Moringa leaf powder in a state immersed in a mixed solution of water and ethanol on an ultrasonic extractor; A fourth step of secondary extraction by reacting the primary extract while being immersed in water on an ultrasonic extractor; A fifth step of filtering the secondary extract to remove impurities, and then concentrating by removing 90-99wt% of the solvent with a rotary evaporator; And a sixth step of freeze-drying the concentrate at a temperature of -40 to 70°C to obtain a composition from which the solvent is completely removed. In addition, according to another aspect of the present invention, in the relief composition of alcoholic fatty liver using Moringa leaf extract: (A) powder using Moringa leaf, (B) fractional extraction of a mixed solution of water and ethanol To do. In the present invention, after fractionally extracting Moringa leaves, the relief composition of alcoholic fatty liver can be most effectively and completely obtained, and then used as various raw materials, such as pharmaceutical raw materials, and it is possible to easily change the formulation, and it is easy to absorb the human body and at the lowest cost. The effect of suppressing inflammation and oxidative stress caused by the liver while performing the function of preventing and mitigating alcoholic liver damage in terms of functional and morphological aspects through an alcoholic fatty liver relief composition that can mass-produce high-additive substances in a mass-processed form. Is expected.
priorityDate 2018-03-16-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID442514
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID61346842
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID57243297
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP9WQ90
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP9WQ91
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5464587
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID539188
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID10116
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID49787044
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450501454
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID2875
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID3735
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID24167418
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID403086
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID62225722
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID57469701
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID61331384
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419526621
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1251836
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID914363
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID5656924
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID678688
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID25086
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID57210135
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID13478
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID60901531
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID60667272
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID135777636
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID13106
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3763
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID549559
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419507060
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID450857
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID56470774
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID55590735
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID81670
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID66671444
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419581356
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100537633
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID45052093
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1571
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID45665576
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID66939874
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID3735
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID10116
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID45957157
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID2539795
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID56963851
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID61752993
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100066422
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID61480213
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID57975493
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID57990680
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID415128
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP63499
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO01945
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID282213
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID75205729
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID56904445
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID7962317
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID76282
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID6800562
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID56731807
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1798
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID61603107
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100342572
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426146495
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID61614219
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID60851377
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID944817
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1024293

Total number of triples: 92.