http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-102139866-B1

Outgoing Links

Predicate Object
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H02N11-002
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-06
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H02N11-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D71-06
filingDate 2018-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2020-08-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2020-08-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-102139866-B1
titleOfInvention Carbon layer coated hydrophilic fiber membrane based electrical energy generator and manufacturing method thereof
abstract The present invention utilizes an electrical double layer formed in the process of adsorption of a polar solvent to the surface of carbon, and simply uses a small amount of solvent to connect one of the two electrodes connected to the hydrophilic fiber membrane coated with the carbon layer. The present invention relates to a new concept electric energy generating apparatus and a manufacturing method thereof for generating electric energy by continuously maintaining a potential difference formed by wetting of an asymmetric solvent by dropping only in a region. Specifically, the hydrophilic fiber membrane-based electric energy generating device coated with a carbon layer forms a carbon layer by uniformly applying carbon particles to the surface of the fiber strands of the hydrophilic fiber membrane through a dipping process. The hydrophilic fiber membrane, which has a large surface area and high polar solvent absorption capacity, allows carbon particles to be applied to the largest possible area and absorbs polar solvents for a long time, effectively preventing the electric double layer and potential difference between the polar solvent and the carbon particles for a long time. Can be formed. In particular, by dropping a small amount (0.25 ml) of a polar solvent onto the surface of a hydrophilic fiber membrane-based electric energy generating device coated with a carbon layer, electric energy can be generated for more than 1 hour. A hydrophilic fiber membrane-based electric energy generating device coated with a carbon layer can increase voltage and current in the form of stacked, series, or parallel types. The generated DC type power can drive the LED without a separate rectifier circuit or energy storage device, and can be stored in a supercapacitor to drive a high-power electronic device (electric fan).
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2021344287-A1
priorityDate 2017-11-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID176
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448030723
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID406903350
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16218600
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23667983
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22833303
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520527
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6342
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22185311
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559502
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426152218
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID455858454
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1049
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419550829
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9920342
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411932836
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419530015
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419547992
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID887
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426254013
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID443314
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3776
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419513958
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415967486
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID62815
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449210251
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID57371080
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453428258

Total number of triples: 52.