http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101491743-B1

Outgoing Links

Predicate Object
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A63B21-075
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A63B21-0726
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A63B21-0602
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A01G1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A01G1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C05D9-02
filingDate 2013-01-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2015-02-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2015-02-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-101491743-B1
titleOfInvention Cultivation method of ascomycota mushroom using nano-gold coloid
abstract The present invention relates to a method for cultivating a mushroom fungus using a gold nanocolloid solution, specifically, a method for cultivating mushroom fungus caused by incorporation of atmospheric bacteria, airborne fungi, and harmful bacteria, The method comprising the steps of: (a) cultivating a mixed solution comprising a mixture of a mixture of a solution and a solution in a culture medium; (b) Cultivation method. Conventional cultivation methods include the death of mushroom species caused by atmospheric bacteria, airborne fungi, and harmful fungi which are inevitably involved in the cultivation process, insufficient formation of fungi due to degradation of viability of seed bacterium, A part of or all of the contamination occurred frequently in a vicious cycle. However, in the case of the Cordyceps sinensis and the Aspergillus ficus-indica mushroom bacteria described in the embodiment of the present invention, since the gold nanocolloid solution is used to sterilize atmospheric bacteria, airborne bacteria, and harmful bacteria in the immobilized gold nano, The number of fruiting bodies is greatly increased, and the growth period is increased, and it can be confirmed that there is a great effect on the growth of fruit bodies. In addition, unlike conventional cultivation methods of carrot fungi and porcine fungi that artificially replace the destruction and deficiency of nutrients by utilizing grains, sawdust, and abandoned surfaces, the present invention using a gold nano colloid solution is a method in which a certain amount If only water and nutrients are available, fruiting body can be cultivated by directly cultivating the fungi isolated from the fungus in an animal culture medium such as a fungus such as a fungus and a pupa, and the fungus can be cultivated. Also, Mycelia grows and mycelial mats are formed, and cultivation environment must be established for mushroom cultivation. The present invention can contribute to the cultivation of high-quality mushroom of acanthaceous fungus after expansion, and it can lay the foundation of environment-friendly cultivation, and its technical contribution will be great. In addition, the gold nanocolloid solution used in the present invention can be used in a wide range of potential applications such as catalysis, medical diagnostic tools, and image sensing in addition to the antimicrobial activity and antioxidation activity of gold. Therefore, It is considered that the components (anti-cancer and anti-inflammatory) are rapidly absorbed by the human body, and each component (anti-cancer and anti-inflammatory) can be absorbed by the human body.
priorityDate 2013-01-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-19980033558-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-100879722-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H0787839-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID1773
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9XSW9
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID309271
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID82096
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID72228
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID403616
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID90470904
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID370
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6508
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID445421
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4220
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID3952
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID1773
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID29564
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID280836
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ257X2
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID519065
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4220
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID5322
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID73501
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID320146
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419547110
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID73501
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID25608
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419587073
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID45847
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100049298
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID161934
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID72228
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID171638
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP50595
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23985
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP50596
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ95234
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415863402
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ588F8
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ95189
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4039
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ588G0
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO42164
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID519065
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID5322
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP41160
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO93416
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID309271
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP41159
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID548631
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4039
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID16846
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ706D1
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID37439
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415722525
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID320146
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID482532689
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9TU09
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID161934
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO02750
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID5082
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ1XG29
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ28603
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ706D0
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID5082
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ29406
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID29564
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID45847
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523562
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9N2C1
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID82096
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ28504
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID72304
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ5J732
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO02720
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415967960
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100150233
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID449638
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID431577134

Total number of triples: 95.