http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101145297-B1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_cbffa3b81b3b862dc7220b5648f5f745
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-80
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-483
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-362
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B32-168
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-139
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-587
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G53-04
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82B3-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-583
filingDate 2010-10-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2012-05-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ee09ea2bb51b1a1ee12ce454112f3086
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ce9aefef8d5a851aee3224a1a4c777df
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_18855b2ce48247b3f43550af43800635
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a7c5602bcee6092cc72fde0ecf7784e1
publicationDate 2012-05-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber KR-101145297-B1
titleOfInvention Development of ultra-high power lithium-ion secondary battery negative electrode material using oxide carbon nanocomposite capable of size dynamic transition
abstract The present invention comprises the steps of adding an ultra-high power lithium-ion secondary battery negative electrode composition and (a) carbon nanostructure to the ethylene glycol solution using an oxide carbon nanocomposite capable of size dynamic transition and then dispersing by ultrasonic wave; (b) adding an Ethylene Glycol solution in which a transition metal precursor is dissolved, and adding 1M aqueous NaOH solution as a reducing agent; (c) reducing the metal salt by heating in a microwave oven for 60 to 120 seconds, and then centrifuging the dispersion at 6000 to 8000 rpm for 10 to 20 minutes; (d) vacuum drying at 50 to 70 ° C. after the centrifugation, heat treatment at 250 ° C. to 350 ° C., and heat treatment at 200 ° C. to produce an oxide-carbon nanocomposite hybrid material. (Oxide) Carbon (Carbon) relates to a method for producing a lithium ion secondary battery negative electrode composition, characterized in that using the nanocomposite. The present invention reduced the size of the nano-sized particles during the adsorption / desorption of lithium, which can demonstrate the phenomenon of increased capacity and reaction rate, higher capacity than when only pure transition metal oxides or carbon nanostructures are present. Since it exists as a small metal, it is possible to implement a high power cathode, so that the industrial applicability is very high.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-101470927-B1
priorityDate 2010-10-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2007213859-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20110023263-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20100028356-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2010212309-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558806
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID417430547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450479996
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419504776
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449798576
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID174
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23673458
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5281040
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11651651
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453720562
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425193155
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID444749
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID783
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13387
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194

Total number of triples: 57.