http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H06216365-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_79b5f9d76648dfc226a261cfb970de9c
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0602
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-3428
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-4087
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0601
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-026
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-2063
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-04256
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0264
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-4031
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-042
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-20
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S3-23
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G02B26-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L27-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-026
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B41J2-44
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B41J2-455
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B41J2-45
filingDate 1993-12-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0636afba76c536e97e94c2d43dc73457
publicationDate 1994-08-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-H06216365-A
titleOfInvention Independently addressable semiconductor laser with low-loss integrated passive waveguide
abstract (57) Abstract [Purpose] To increase the density of independently addressable semiconductor diode lasers within a monolithic semiconductor structure. In the monolithic semiconductor structure 40, a passive optical waveguide 58 couples a laterally offset generation waveguide 56 that generates a light wave to a mirror 52. The passive optical waveguide 58 also couples a detection region for measuring the intensity of light in the laser resonant cavity and an adjustable absorption region for tuning the wavelength of the light wave generated by the generation waveguide 56. The electrically passive interconnection of the functional devices in the laser resonant cavity makes it possible to laterally offset the basic device. Lateral offsets and passive optical interconnections extend the area of electrical crossover, which greatly simplifies the independently addressable device contacts on each chip, reducing their density and number. Will increase.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H11145561-A
priorityDate 1992-12-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518858
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID10279
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID10279
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15051

Total number of triples: 36.