http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2022512732-A

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-479
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30242
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-30024
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03H2001-0033
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T2207-20081
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-453
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03H2210-46
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2015-1486
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03H2210-42
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06V30-19173
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06V20-69
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06V20-698
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-487
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03H1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01B11-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03H1-0005
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N15-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06V10-82
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G03H1-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06T7-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-49
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-17
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-01
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-483
filingDate 2019-10-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2022-02-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2022512732-A
titleOfInvention Equipment and Methods for Motility-Based Label-Free Detection of Motility Objects in Fluid Samples
abstract A system and method for detecting motile objects (eg, parasites) in fluid samples by utilizing parasite migration as a specific biomarker and endogenous contrast mechanism. The imaging platform includes one or more substantially optically transparent sample holders. The imaging platform includes a light source and a movable scanning head that includes a corresponding image sensor associated with the light source. A light source is directed at each sample holder containing the sample, and each image sensor is placed under each sample holder to capture the time-varying holographic speckle pattern of the sample contained in the sample holder. The computing device is configured to receive a time-varying holographic speckle pattern image sequence acquired by an image sensor. The computing device generates a 3D contrast map of the kinetic objects in the sample and uses deep learning-based classification software to identify the kinetic objects. [Selection diagram] FIG. 1A
priorityDate 2018-10-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4235
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419493476
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22978774
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414206935
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7322
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419701332

Total number of triples: 39.