http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2019521546-A

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H03M1-66
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N60-124
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N60-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N60-805
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N10-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H03M1-66
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H03M1-66
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L39-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G11C11-44
filingDate 2017-05-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2019-07-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2019521546-A
titleOfInvention Systems and methods for superconducting circuits and superconducting devices used in scalable computing
abstract Techniques useful for the operation of scalable processors with ever larger numbers of logic devices (eg, qubits) take advantage of the benefits of QFPs, such as shift registers, multiplexers (ie MUXs), demultiplexers (eg Controls that implement DEMUX) and permanent magnet memory (ie, PMM) etc. and / or utilize XY or XYZ addressing schemes and / or extend in a "braid" pattern across an array of devices Use a line. Many of these described techniques are particularly suitable for performing input to such processors and / or output from such processors. Provided is a superconducting quantum processor comprising a superconducting digital to analog converter (DAC). DACs can use dynamic inductance to store energy through thin film superconducting materials and / or Josephson junctions in series, and can use single loops or multiple loops. Disclosed are specific structures of energy storage elements, including serpentine structures. Disclosed are inductive connections as well as galvanic connections between DACs and / or to target devices.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2020537395-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2023167070-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11730066-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2022220254-A1
priorityDate 2016-05-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-8933695-B1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524915
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID31155
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID92323602
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ8WPJ2
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491804
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCG1K3N4
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCB3PF24
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5359268
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID433323431
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID31155
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5352426
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP49424
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA1A278

Total number of triples: 34.