http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2018088256-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_fdf3b6ced3d7710ec0bc0addb67a1cc9
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02D10-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F12-0802
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F1-3287
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F1-3225
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F1-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F12-0804
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F12-08
filingDate 2017-12-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_087372e577a4b98d7e7a895f5a1d1071
publicationDate 2018-06-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2018088256-A
titleOfInvention Semiconductor device
abstract A semiconductor device capable of reducing power consumption is provided. In a semiconductor device equipped with a CPU, the access frequency to the cache memory is monitored, and when the access frequency is uniform, the supply of power supply voltage to the CPU is cut off and the access frequency is non-uniform. In this case, the supply of the power supply voltage to the memory in the cache memory can be cut off with a time difference, and finally the supply of the power supply voltage to the CPU can be cut off. Further, by performing efficient write-back processing based on the dirty bit determination, further power saving of the semiconductor device can be achieved. [Selection] Figure 1
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2020245688-A1
priorityDate 2012-05-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2006309734-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID850950
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID425060
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1196
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID78989
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID10229
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100858576
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID512737
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID459865
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID53873839
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID30140
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID422167686
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID457364
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID12747
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID490427
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID12748
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID301434
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID9894
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID613808
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1195
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID558981
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID365842

Total number of triples: 39.