http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2017169647-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d732e079c1f9f23dbc3881c08353cd04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_cbd7eb2e3a76b55013b3156a0375ecd5
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B5-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B5-0402
filingDate 2016-03-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f36b5fad301c92c64b39fd479d21d4ca
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_eb36e97f9ffed5a6c9fe75b0e217f56a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1ba86e32aad43efeaf317587727c9114
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9673755ae642490972456f7a1f69bbd8
publicationDate 2017-09-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2017169647-A
titleOfInvention Biological signal measuring apparatus and biological signal measuring method
abstract A biological signal measuring apparatus that can be used for long-term monitoring, is highly comfortable and well tolerated, and can measure a plurality of biological signals with high accuracy using a single non-invasive sensor. Etc. A sensor includes a piezoelectric element that is attached to a body surface of a chest of a living body and converts vibration generated by the living body into a voltage. The signal conversion unit 2 receives the first electric signal output from the piezoelectric element 21, amplifies the first electric signal, and converts the amplified first electric signal into a first digital signal (step) S1). The control unit 3 differentiates the first digital signal into a biological heart motion vibration signal, filters the first digital signal with a band-pass filter to generate a biological heart sound signal, and passes the first digital signal through a high-frequency range. Signal processing is performed by filtering with a respiratory airflow sound signal of a living body, and the first digital signal is filtered with a low-pass filter to generate a biological thorax respiratory motion signal (step S2). [Selection] Figure 6
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-7122225-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-7345761-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2020069113-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-111655123-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2021502179-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-20200129791-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/KR-102188134-B1
priorityDate 2016-03-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2013541973-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2014202829-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2013210367-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449188861
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID57448911

Total number of triples: 28.