http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2016175798-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d1325d12e19ec7f0749a52ac55c2211b
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C16-27
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B29-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C16-513
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B31-06
filingDate 2015-03-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_286cf539877a79d865d9ae1365f1c905
publicationDate 2016-10-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2016175798-A
titleOfInvention Nanocrystalline diamond, method for producing the same, and apparatus for producing the same
abstract Nanocrystalline diamond particles having a uniform particle diameter can be produced without crushing massive diamond. By supplying a source gas containing silicon and carbon to a plasma space (P) formed in a reaction chamber (2), the silicon and carbon contained in the source gas are liberated in a plasma environment. In addition, silicon having SP3 crystal structure is used as a crystal nucleus, and carbon is covalently bonded around the crystal nucleus by vapor phase synthesis, and the recovery container (5) arranged immediately below the plasma space (P) is charged to the negative electrode for recovery. . [Selection] Figure 1
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2018055661-A1
priorityDate 2015-03-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2008543718-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H04321596-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H02192415-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID66185
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419544403
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6396
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415733498
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419544406
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6326
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559546
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524686
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID70435
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID70434
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12052
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414869995

Total number of triples: 36.