http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2015040757-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_82cbc291d77c061ac9a216f86ec010a3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_8af19d05c71d306141bc1fdbd2f05f39
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-62
filingDate 2013-08-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_17888d752223e759a6556a3bc6d33c14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_bae6e993fdadcfc78d60bd127d9a0f78
publicationDate 2015-03-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2015040757-A
titleOfInvention SPECTRUM PREDICTION METHOD, SPECTRUM PREDICTION DEVICE, AND PROGRAM
abstract A spectrum prediction method, a spectrum prediction apparatus, and a program for accurately predicting an MSn spectrum by simple calculation are provided. Information on the structure of a sugar molecule is read (step S502). A deprotonation probability is calculated by simulating deprotonation in the sugar molecule using the read information on the structure of the sugar molecule (step S504). An empirical fragmentation pattern is used to predict the fragment type generated by the deprotonation simulation (step S506). Information on the fragment type of the sugar molecule whose generation is simulated is stored (step S508). Based on the deprotonation probability and the predicted fragment information, the MSn spectrum of the sugar molecule is predicted (step S510). [Selection] Figure 6
priorityDate 2013-08-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2004191077-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2009264966-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2006058151-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2011220733-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID197
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP80191
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546193
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP02765
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29700
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24139
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0HJD1
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29701
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID11625
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458397310
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP24090
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID25373
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29699
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP12763
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP97515
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID124220
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO70159
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415824772
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9N2D0

Total number of triples: 35.