http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2014531208-A

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q2563-107
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q2600-156
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q2527-107
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6883
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6886
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6827
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12Q1-68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N15-09
filingDate 2012-09-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2014-11-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2014531208-A
titleOfInvention Gene copy number polymorphism testing method
abstract The present invention relates to the field of genetic testing, and particularly to a method for testing gene copy number polymorphism. In this method, an endogenous or exogenous similar sequence that is not similar to the sequence of the gene to be tested is selected, the corresponding primer is designed, the sequence of the gene to be tested and the similar sequence are simultaneously amplified, and then a melting curve Analyze. When a copy number variation occurs in a gene waiting for testing, the analysis result of the melting curve thereof can be clearly distinguished from the analysis result of the gene waiting for wild-type testing, thereby achieving the purpose of the test. The method of the present invention is used not only for examination of gene copy number polymorphism but also for examination of chromosome aneuploid. Further, the method of the present invention is applied not only to screening of gene copy number polymorphism patients and chromosomal aneuploid patients, to normal prenatal testing, but also to noninvasive prenatal diagnosis. The method of the present invention has advantages such as high speed, accuracy, high sensitivity, high specificity, high throughput, low cost, and no contamination. [Selection] Figure 1
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-7235315-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-WO2019074004-A1
priorityDate 2011-09-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009087846-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559199
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419519483
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25320183
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419593497
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID65091
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID64968
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID135398599
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419563002
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411621736
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ9NBA1
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104748

Total number of triples: 30.