http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2014175341-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_165f133e9f3f5e5e13bf37ce7e8cfc7a
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-42316
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-452
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-1066
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-823481
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-823418
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-2003
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L27-088
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-26586
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-41725
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-7786
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-265
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-66462
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-2654
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-338
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-337
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L27-098
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-778
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-812
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-808
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-417
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-41
filingDate 2013-03-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a7c5c58acd9641d35585c581de79d8d1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_308ec40338df847bb32400d18e99ab49
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c7e1d74a6e3fbd8eb84087f4e13402e7
publicationDate 2014-09-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2014175341-A
titleOfInvention Semiconductor device and manufacturing method thereof
abstract In a semiconductor device and a manufacturing method thereof, a breakdown voltage of a field effect transistor is increased. A nitride semiconductor layer is formed on a substrate and includes an active region and a device isolation region into which an inert atom is introduced. The nitride semiconductor layer is formed on the nitride semiconductor layer. The source electrode 43 and the gate electrode 37 are formed on the nitride semiconductor layer 22 at a distance from the gate electrode 37, and a first distance a1 is formed from the boundary B between the element isolation region 22b and the active region 22a. In the first distance a1, the concentration of the inert atoms 27 diffused from the element isolation region 22b to the active region 22a becomes the first concentration. The electron density of the active region 22a at a position larger than the second distance a2 and the concentration of the inert atoms 27 is higher than the first concentration is lower than the electron density in the central portion 22d of the active region 22a. The [Selection] Figure 5
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2021089934-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-WO2017051530-A1
priorityDate 2013-03-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-H05235044-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2012043334-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579069

Total number of triples: 37.