http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2014088512-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_2eb0bfed4b65b7c9683f9c5c6fcf06a9
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C10N30-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C10N40-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C10N40-02
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C10M105-70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C10M159-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C10M103-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C10M105-72
filingDate 2012-10-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d5c01b5cbd8cabb023663fae66f481df
publicationDate 2014-05-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2014088512-A
titleOfInvention Sliding mechanism and sliding control method
abstract A sliding mechanism and a sliding control method capable of dynamically controlling a frictional force between two sliding surfaces sliding with each other at low cost. A metal flat plate 2 having a first sliding surface 21 covered with a resistance film 41 formed on an upper surface 24, and a second sliding surface 31 covered with an insulating film 42 is a first sliding surface. The metal cylinder 3 formed on one end surface 33 facing the surface 21, the ionic liquid 5 interposed between the first sliding surface 21 and the second sliding surface 31, the metal plate 2 and the electrical An electrode rod 61 connected to the metal cylinder 3, an electrode brush 62 electrically connected to the metal cylinder 3, a DC power source 7 for applying a voltage between the electrode brush 62 and the electrode rod 61, and a control device 9 for controlling the DC power source 7. . When a voltage is applied between the electrode brush 62 and the electrode rod 61, the on / off control of the switch 91 in the control device 9 is performed using the fact that the frictional force between the first and second sliding surfaces 21 and 31 increases. Thus, the frictional force between the first and second sliding surfaces 21 and 31 is dynamically controlled. [Selection] Figure 1
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2015031337-A
priorityDate 2012-10-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419563072
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2734162
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID26255
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11009533
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559091
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID174076
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID420167365
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419514938

Total number of triples: 27.