http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2010038804-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f97f0fa258a008bf056ad04b7f380dda
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-64
filingDate 2008-08-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fc69eab7fb51df358b4e92af8beabb94
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3a6aae03c877aee22fb40bad037c03e3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_67141c5d744d31be8f95de07888e305e
publicationDate 2010-02-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2010038804-A
titleOfInvention Quantitative fluorescence detection of inorganic cations
abstract Provided is a quantitative fluorescence detection method for inorganic cations having a high response speed and high sensitivity. Two types of inorganic cation probes are formed by binding molecular recognition sites that selectively recognize inorganic cation molecules to be detected to the surfaces of two types of quantum dots having different particle sizes. When these two types of inorganic cation probes form a complex through the inorganic cation molecules to be detected and the two types of quantum dots come close to each other, a Forster excitation energy transfer occurs between the two types of quantum dots, resulting in a fluorescence spectrum. The shape changes. For this reason, an inorganic cation can be detected quantitatively based on the shape change of the fluorescence spectrum which arises with two types of quantum dots. [Selection] Figure 1
priorityDate 2008-08-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559510
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID864
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14784
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2733744
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID522606
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2733085
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28557
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458437694
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419530580
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID516900
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28123
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559577
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449052708
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9269
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416154850
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447774866
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID140995658
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419522564
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416153611
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23994
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425992081
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557048
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID923
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454270067
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419589066
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559554
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3611393
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524278
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID813
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419550829

Total number of triples: 46.