http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2009200240-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_60f4022f4114e6bbeb83472a17dd8959
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_4edd4e526605dbd18b513b4b30d19ab2
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-13
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01G11-54
filingDate 2008-02-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7675e165f1167c72d13f4a18523525e7
publicationDate 2009-09-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2009200240-A
titleOfInvention Organic electrolyte for electric double layer capacitor and electric double layer capacitor.
abstract 【Task】 When an electric double layer capacitor using a non-porous carbonaceous electrode uses a mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC) as the electrolyte, the electrolyte and negative electrode actives are formed on the negative electrode side of the electric double layer capacitor. There was a problem with the reaction of the material with the non-porous carbonaceous electrode. [Solution] By including a pyrrolidinium salt as a solute in an organic electrolyte for an electric double layer capacitor and an aromatic carbonate in an organic solvent, an aromatic carbonate film is formed on the carbonaceous electrode to increase heat resistance. It can be used up to a high temperature, and further, charge / discharge characteristics are improved, so that capacity reduction can be suppressed. [Selection figure] None
priorityDate 2008-02-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID9958
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID97638
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID200182
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13269093
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559275
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID421761316
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID122439
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7924
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID79119
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415837834
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID67724100
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559376
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419544706
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID20029734
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415874035
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID138067
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410778979
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415822245
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415755940
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12021
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID75112
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412232737
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419519407
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID768
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454525986
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID70761
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3613359
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415767626
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7381
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414953627
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID456171974
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415801297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410507364
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520276
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID19660

Total number of triples: 48.