http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2008163940-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_c72d118f5664072de841f9c5c34b9d99
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2240-303
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2270-172
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S415-914
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2270-17
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T50-60
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2240-121
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F05D2260-202
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D5-186
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D5-187
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D5-143
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F04D29-681
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D5-145
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D9-065
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/F01D9-041
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H05H1-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F01D5-28
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F01D5-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/F01D9-02
filingDate 2007-12-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c4d78a2a0873284e89acac68e8a3c82c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_30807ca4412f0f04761d0ce43859a950
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b7eedfb436728755b417a887b8824ecb
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2aa8e13eeefbfd63ea283c672b28a93e
publicationDate 2008-07-17-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2008163940-A
titleOfInvention Airfoil leading edge wall eddy current reduced plasma
abstract In order to achieve better aerodynamic performance and reduce surface heating, the intensity of horseshoe vortex is minimized. A leading edge vortex reduction system is located near and around a leading edge of a gas turbine engine airfoil 39 extending longitudinally away from an end wall 88 and the leading edge LE of the airfoil. And one or more plasma generators extending longitudinally through the fillet between the airfoil and end walls in a leading edge region 89 located near the fillet 34. The plasma generator is operable to generate a plasma that extends over a portion of the fillet within the leading edge region. The plasma generator has a first portion located on the pressure side of the airfoil and a second portion located on the suction side of the airfoil, on the outer wall of the airfoil. Can be installed. A method of operating the system includes powering one or more plasma generators to form a plasma in a steady state or unsteady mode. [Selection] Figure 8
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11639667-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2017141712-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-11078794-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-WO2017141712-A1
priorityDate 2006-12-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411717546
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID286

Total number of triples: 36.