http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2008102797-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_36d1d9c59848bff6ad5f55923d1290f5
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F1-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F1-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H03K5-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H03K5-131
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H03K5-14
filingDate 2006-10-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_32acf9dd36b01929ac96c252ae9a1167
publicationDate 2008-05-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber JP-2008102797-A
titleOfInvention Semiconductor device, semiconductor integrated circuit device, and allowable phase difference measurement circuit
abstract A semiconductor device capable of effectively suppressing a current peak at low cost is obtained. In step ST1, the clock phases of module A21 and module B22 are made to coincide with each other, and then in step ST2, data is transferred from module A21 to module B22. Thereafter, in step ST3, the clock phase difference between the clock CLKA of the module A21 and the clock CLKB of the module B22 is set to a predetermined magnitude, and then in step ST4, the module A21 and the module B22 are each independently subjected to predetermined arithmetic processing. I do. In step ST5, the phases of the clock CLKA of the module A21 and the clock CLKP of the CPU 25 are matched, and then the calculation result of the module A21 is read by the CPU 25 in step ST6. [Selection] Figure 16
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2012085190-A
priorityDate 2006-10-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID12747
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID365842
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID30140
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID78989
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1195
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID512737
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID613808
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID1196
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID39859
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447920381
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID12748
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID490427
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID9894
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID10229
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100858576
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID457364
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID425060
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID301434
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID459865
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID558981
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID850950

Total number of triples: 36.