http://rdf.ncbi.nlm.nih.gov/pubchem/patent/GB-2371407-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_3474163988bef091f57392c448f942b9
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-026
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-1032
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-10
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-026
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-10
filingDate 2001-01-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2ac7641dad3f40c747ffe98c458774b6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4d52d2cc22bb2f0772fe29a6a6494e4b
publicationDate 2002-07-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber GB-2371407-A
titleOfInvention A Laser
abstract A laser device 10 has at least two lasing regions and an interference region 16 into which an output of each lasing region is coupled. An output region 18 extends from the interference region 16 into an output 20 of the device. The device may be fabricated from Ga As (wavelength range 600 to 1300 nm), or from InP (wavelength range 1200 to 1700 nm). Each lasing region may comprise an optically active ridge waveguide 12, 14 arranged parallel to each other. The interference region 16 may comprise a Multimode Interference (MMI) coupler. The active waveguide may be selected from Large Optical Cavity waveguides (LOC), Anti Resonant Reflecting Optical Waveguides (ARROW), or from Wide Optical Waveguides (WOW). Each active waveguide may be formed from a core layer 30 of active lasing material sandwiched between first and second cladding layers 28, 32. The active lasing material may comprise or include a Quantum Well structure (QW) 34 configured as an optically active region laterally bounded by regions of compositionally intermixed, or disordered material. The disordered regions may have a larger band energy and a lower optical absorption than the active region. The device may have a back surface 22 which includes a non absorbing mirror (NAM) (52, 54 Figure 1). An optional diffractive region (56a Figure 3) can allow the output power to be increased to a greater level before Catastrophic Optical Mirror Damage (COMD) occurs. A method of fabricating a laser device is also disclosed. The method may use a diode sputterer in conjunction with an Ar atmosphere to deposit a dielectric layer such as silica on the device. Alternatively, the dielectric layer may be deposited using PECVD. The device may be annealed.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2021028593-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2011068460-A1
priorityDate 2001-01-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31170
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557771
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14770
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557764

Total number of triples: 23.