http://rdf.ncbi.nlm.nih.gov/pubchem/patent/GB-1161425-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_cc8b77ff86a2dfdbca33e7de285d81bf
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-80
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G49-02
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G49-02
filingDate 1966-08-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_37ce905471327305b7294a5b82a5fc3f
publicationDate 1969-08-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber GB-1161425-A
titleOfInvention Method for Manufacture of High Purity Iron Oxide Powder
abstract 1,161,425. High purity iron oxide powder. YAWATA IRON & STEEL CO. Ltd. 22 Aug., 1966, No. 37499/66. Heading C1A. High purity iron oxide powder is produced by decomposing an organic # complex of formula (where X is O or N, and R 1 -R 3 are selected from H or halogen, aliphatic, alicyclic or aromatic hydrocarbon residues), by reaction with a hydrazine derivative, thus obtaining a powdered oxide, consisting mainly of magnetite. In the example, electrolytically pure iron oxide is dissolved in hydrochloric acid, extracted in methyl isobutyl ketone (MIBK), and the layer of MIBK extracted reversably in pure water to give an aqueous solution of ferric chloride. Acetylacetone is added to this aqueous chloride solution, thus forming acetyl acetone iron chelate, which is then purified by sublimation. The purified chelate is decomposed by reaction with hydrazine hydrate, thus yielding high purity iron oxide powder.
priorityDate 1966-08-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527028
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID312
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24654
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24380
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448490468
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14945
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419525871
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID86755040
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14789
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449682174
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559517
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559288
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546719
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557048
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411746874
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID7909

Total number of triples: 34.