http://rdf.ncbi.nlm.nih.gov/pubchem/patent/ES-2848715-T3

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_eef40ac8f1d092de5557ad2bd2cb5fc8
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q2565-607
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-3278
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6851
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6869
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6876
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-48721
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-447
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N27-44791
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N33-487
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6806
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N27-447
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12Q1-6806
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-53
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N33-487
filingDate 2017-10-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2021-08-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6b3c04bf1c006380d93a03a1b98b826d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_796af41178e005a199e44427ccdd4935
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_44046ed4c11c42db5f74be6a2571c5d9
publicationDate 2021-08-11-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber ES-2848715-T3
titleOfInvention Fractional abundance of polynucleotide sequences in a sample
abstract A method of determining an improved estimate of a true relative abundance of a target analyte in a mixed unknown sample using a nanopore device, comprising applying a voltage across a nanopore in a nanopore device to generate a detectable electronic signature and to induce translocation of loaded analytes through said nanopore for a mixed unknown sample, or separately for each of a control sample and the mixed unknown sample: the control sample comprising a known relative abundance of target analytes in terms of reference analytes, and the mixed unknown sample comprising said target analytes and said reference analytes, wherein the relative abundance of said target analytes in said sample is to be determined; generating a plurality of event signatures generated by translocation of said target analytes and said reference analytes through said nanopore for the mixed unknown sample, or for each of the control sample and the mixed unknown sample; identify a number of first event signatures associated with said target analyte and a number of second event signatures associated with said reference analyte from said plurality of event signatures to determine a detected relative abundance of first and second event signatures for the mixed unknown sample, or for each of the control sample and the mixed unknown sample; and adjusting a detected relative abundance of said first and second event signatures in said mixed unknown sample using the detected relative abundance of said first and second event signatures in said control sample or a predetermined relative abundance of said first and second event signatures. from previous separate control experiments to correct for an error in the detected relative abundance, thereby determining an improved estimate of the true relative abundance of said target analyte in said mixed unknown sample; wherein said estimate of true relative abundance is an estimate (R * mix) of the true ratio of said target analyte and said reference analyte in said mixed unknown sample or an estimate of the true fraction (F * mix) of said target analytes in a population of said reference analytes and said target analytes in said mixed unknown sample, wherein said estimate (R * mix) of the true ratio is determined by R * mix = ρα, or said estimate of the true fraction (F * mix) is determined by ** (See formula) ** where the parameter ρ is an estimate for the ratio that can compensate for a false positive detection error, a false negative detection error, or both, and in where the parameter α can be used to compensate for a constant differential of the capture rate between said target analyte and said reference analyte, where ** (See formula) ** and ** (See formula) ** in which each of the Qdiana, Qref and QX: Y is a fraction ion predetermined or observed by the method.
priorityDate 2016-10-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID27787
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID4893
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426098968
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID125893
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID353120
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6327157
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID445289
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID473387
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID16653
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID672
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID109059246
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100049322
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID497672
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID27787
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP35396
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID3845
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID373672
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID100209445
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID541140
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID827854
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ03181
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID24525
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID418207
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID12189

Total number of triples: 50.