http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3868864-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_31354fd934c9a67e4c5db2b85429f6cf
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L3-502761
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2400-0442
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2291-0423
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2291-0426
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2400-0436
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N30-80
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N15-87
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L3-502761
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N29-222
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H10N30-10513
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M23-16
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12M3-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L41-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N29-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L41-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L41-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N29-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L41-02
filingDate 2018-02-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6056baf48ae7bfd84cfd532b92842d70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d4cf45b7914e7459870c730269453601
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f408fe097f25901e98372c2a92db2c34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_87279600aa968bf35af91a7c172f0d6c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a574255ae5c20f47e791e85c92e7f976
publicationDate 2021-08-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-3868864-A1
titleOfInvention Device and method for intracellular delivery of biomolecular cargo via acoustic wave exposure
abstract A microfluidic-based device and system is disclosed for the high-throughput intracellular delivery of biomolecular cargo to cells (eukaryotic or prokaryotic) or enveloped viruses. Cargo integration occurs due to transient membrane permeabilization by exposure to bulk acoustic waves (BAWs) transduced from surface acoustic waves (SAWs) generated by a rapidly oscillating piezoelectric substrate. In this approach, temporary pores are established across the cellular membrane as cells are partially deformed and squeezed or subject to shearing forces as they travel through the vibrational modes created within the microfludic channel(s) of the device.
priorityDate 2017-02-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014033808-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9512421-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2014273229-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2016077761-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013213488-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP35396
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2078
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449160084
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546678
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ03181
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23665650
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID159452
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449325759

Total number of triples: 46.