http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3397380-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_664f5b543543aac4cf0153a4ef4e0f85
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-32466
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-32251
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2495
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2203-085
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2485
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2496
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2482
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2479
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-32425
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-30475
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2454
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02P20-52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2428
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-32408
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2203-0233
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-30292
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B3-384
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2487
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2203-1614
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-32248
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02P20-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2203-1064
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2203-1058
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2203-1241
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J2219-2474
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B2203-1023
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-2485
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J23-894
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-023
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B3-384
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-2415
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-243
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J15-005
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-242
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J19-249
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J19-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J19-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B3-38
filingDate 2016-12-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0dd1340ceb4f5a2e55df5f6d34f69118
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5f4ae6deeca78d08c962738eb2cddd95
publicationDate 2018-11-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-3397380-A1
titleOfInvention High aspect ratio catalytic reactor and catalyst inserts therefor
abstract The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3 -dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.
priorityDate 2015-12-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID455728551
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454013297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID45489612
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13836
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID20137769
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID73975
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449573737
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447631851
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61630
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452087022
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453030527
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291

Total number of triples: 64.