http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3363914-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_26da3723d11a0786897640eceb4d464f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_2a819eda0adf22936a52362eeebb9fb4
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2300-0819
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2201-06113
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2201-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2300-0887
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2200-0647
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2200-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2400-0415
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-0346
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2021-6439
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L2300-0816
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6818
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12Q1-6825
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-6486
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-6428
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-645
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01L3-502715
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12Q1-6818
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12Q1-6825
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01L3-00
filingDate 2011-11-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9e603ed447917afa7cbd3f69e2bdf1da
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_06c92f319aebf95b254c13b5242c1a42
publicationDate 2018-08-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-3363914-A1
titleOfInvention Method for amplification-free nucleic acid detection on optofluidic chips
abstract An optofluidic platform is constructed so as to comprise a planar, liquid-core integrated optical waveguides for specific detection of nucleic acids. Most preferably, the optical waveguides comprises antiresonant reflecting optical waveguide (ARROWs). A liquid solution can be prepared and introduced into the optofluidic platform to for optical excitation. The resulting optical signal can be collected at the edges of the optofluidic platform and can be analysed to determine the existence of a single and/or a specific nucleic acid.
priorityDate 2010-11-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2006251371-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID10566
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13806
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453524733
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID235227
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226440325
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID10566
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226440326

Total number of triples: 41.