http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3313275-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_89dea6f7e1e4f39cca3d6819ea83c50d
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-6823
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-341
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-7267
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-681
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-6801
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-6824
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-7203
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16H50-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-283
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-7278
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-316
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-7275
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-4848
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-725
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-726
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-7257
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61B5-7264
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F15-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06F19-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B5-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61B90-00
filingDate 2016-06-24-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a53e0117a72dd20428b174dea7ea457f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_66f997213ebb7c709aa915e2e5b47537
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8fbd254479c6ed887df4cae6c57c7aee
publicationDate 2018-05-02-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-3313275-A1
titleOfInvention Methods and systems using mathematical analysis and machine learning to diagnose disease
abstract Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual biopotential signals) that is used in combination with the measured biopotential signals to generate a multi-dimensional phase-space representation of the body (e.g., the heart). By mathematically modulating (e.g., by expanding or contracting) portions of a given biopotential signal, in the frequency domain, the numeric- based operation gives emphasis or de-emphasis to certain measured frequencies of the biopotential signals, which, when coupled with machine learning, facilitates improved diagnostics of certain pathologies.
priorityDate 2015-06-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10220277
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226408838
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5576
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226408839
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226416097
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5825

Total number of triples: 40.