http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-2549528-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e5db580deca7130dbe51805c6c608b35
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-2003
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-0254
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-205
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-0262
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-4238
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02458
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-42368
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H03F1-3247
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-518
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-517
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-778
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-7782
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-7788
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-7786
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-66431
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-66462
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L29-7789
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-423
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-205
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L29-778
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H03F1-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-336
filingDate 2010-03-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_db47a1d6e1a4e4d7a401d984dffeafc2
publicationDate 2013-01-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-2549528-A1
titleOfInvention Compound semiconductor device and manufacturing method for same
abstract A first GaN layer (2), a first AlGaN layer (3), a second GaN layer (4) and a third GaN layer (5) are formed in layers on a substrate (1). A second AlGaN layer (6) is formed on the sidewall of an opening (10A) formed in the multilayer structure. A gate electrode (8) is formed to fill an electrode trench (7a) in an insulating film (7). A portion (7c) of the insulating film (7) between the gate electrode (8) and the second AlGaN layer (6) functions as a gate insulating film. A source electrode (11) is formed above the gate electrode (8) and a drain electrode (12) is formed below the gate electrode (8). This configuration enables implementation of a miniatuarizable, reliable vertical HEMT that has a sufficiently high withstand voltage and high output power and is capable of a normally-off operation without problems that could otherwise result from the use of a p-type compound semiconductor.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-10325997-B2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-9799726-B1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-3022771-A4
priorityDate 2010-03-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009230433-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2009321854-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID76919
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518858
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID128361982
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518864
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557672
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419513143
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID80922
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID142249
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID876
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15051

Total number of triples: 48.