http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-1955392-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_156bbe3f5d7be5a0396f710305b2c5b3
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-052
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-136
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-5825
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B25-45
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-13
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01D5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-485
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-36
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B25-45
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-136
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-052
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01D5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-58
filingDate 2006-09-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a7cccb2bca865333e11b6b2d5bf54e50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1508a7b49f64d2a87d0f8098385dddf6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_07b6903469d55b8d7f7d6f1622197d39
publicationDate 2008-08-13-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-1955392-A1
titleOfInvention Method for synthesizing electrode material using polyol process
abstract Disclosed herein is an electrode material obtained using a polyol process and a synthesis method thereof. The synthesis method includes the steps of preparing a mixed solution by mixing a transition metal compound, a polyacid anionic compound and a lithium compound with a polyol solvent; and obtaining a resultant product by reacting the mixed solution in a heating apparatus. In conventional methods of synthesizing an electrode material, such as the sol- gel method and the solid reaction method, the electrode material is synthesized through a heat treatment process, which is a post-process. However, in the method of synthesizing an electrode material according to the present invention, there is an advantage in that the electrode material, which has crystallinity due to a structure such as an olivine structure or a nasicon structure, can be synthesized using a polyol process at a low temperature without performing a heat treatment process, which is a post-process. Moreover, there are advantages in that the nanoelectrode material synthesized by the method according to the present invention has a high crystallinity, uniform particles, and a structure having a diameter ranging from several nanometers to several micrometers. Further, according to the present invention, the electrode material has a high electrochemical stability such that the discharge capacity of the electrode material is not greatly decreased even though the initial discharge capacity thereof is high and it is charged and discharged many times.
priorityDate 2005-11-21-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2005244321-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2007113624-A1
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412483216
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID417430547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453001630
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419488529
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411550722
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425836335
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518430
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8172
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412584819
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24965
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8117
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1118
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450394978
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8200
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25199637
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1004
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452397242
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID110612
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID224478
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419572113
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524027
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID174
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25000
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962

Total number of triples: 63.