http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0802886-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e42866d6c3cedbae517fbec85cb1a88a
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-42
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-88
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-03
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-72
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11B5-70642
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11B5-84
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01F1-0063
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G49-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11B5-70678
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G49-0036
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01F1-11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y25-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G11B5-70689
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G11B5-84
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G49-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G49-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G11B5-706
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01F1-11
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01F1-00
filingDate 1995-10-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c11d4f562e429a35a9588e058bec4726
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f5f29da5277b633beb48ad66b5ac6727
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7f1892daddd9611c6022b797b2f8b9c8
publicationDate 1997-10-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-0802886-A1
titleOfInvention Preparation of metal oxide powders using activated ball milling
abstract Total phase transformation of hematite to magnetite was accomplished at room temperature by wet magnetomechanical activation of hematite. Low energy mechanical activation of the oxide surface is sufficient to effect the transformation. Oxygen bonds on a α-Fe2O3 oxide surface are apparently broken during the mechanical activation process and oxygen is released (removed) to the dispersing polar liquid. The oxygen pressure during the process as well as the nature of the dispering liquid have a critical influence on successful and fast phase transformation. Thus, all preparation performed in air, dry conditions or with nonpolar or saturated hydrocarbons (benzene, anthracene) show that the process of hematite reduction is non existent or very slow. Normal air pressure and/or application of hydrocarbons suppress the transformation. The effects of prolonged milling in air and vacuum on BaFe12O19 ionic crystal structure and particle morphology have been analysed. X-ray diffraction, scanning electron microscopy and thermal analysis experiments show, that for vacuum milled material, the ordered structure transforms progressively into a stable disordered nanocrystalline phase. For air milled samples, apart from a structural transformation, chemical decomposition was found. Application of heat treatment restores perfect Ba-ferrite crystal structure with the particle remaining in the submicron size range. With structural changes during annealing, the magnetic properties were altered. Radically different hysteresis behaviour was obtained for powders annealed at 1273 K. The value of volume magnetisation 4πMs = 335.4 - 347.2 kA/m is near the value for premilled ferrite powder (10 % lower), but measured coercivity value Hc = 393.9 - 445.6 kA/m was improved quite remarkably by a factor of 6 due to the fine crystalline grain structure.
priorityDate 1994-10-04-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527388
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14789
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID241
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16217742
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8418
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559219
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411499242
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419525871
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449029786
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447568377
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID518696
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61775

Total number of triples: 46.