http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0702435-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_eacd252a35e563ff741cb2006460bb80
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S148-095
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-2077
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-4068
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-141
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-0268
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-026
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02461
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02463
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02395
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02392
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01S5-4062
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02546
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02543
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-02631
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-20
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G02B6-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01S5-026
filingDate 1995-09-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_871a79455e2c4fc16dc540ac6b2e9818
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_30854d7a25d917fa000e7dc705213da2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d5301c3fc49cffb209b4f241014326d7
publicationDate 1996-03-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-0702435-A1
titleOfInvention Method for making a reflective digitally tunable laser
abstract A method for forming a reflective digitally tunable laser using selective area epitaxy is disclosed. The laser comprises passive waveguides and a plurality of optical amplifiers. The waveguides and optical amplifiers are formed by depositing multiple quantum wells having a suitable bandgap. According to the method, the multiple quantum wells forming both the passive waveguides and the optical amplifiers are deposited simultaneously using a dielectric mask. The mask comprises dual, rectangularly-shaped strips of dielectric material, spaced to form a gap. The multiple quantum wells grown in the gap are suitable for use as optical amplifiers, and those grown outside of the gap are suitable for use as passive waveguides.
priorityDate 1994-09-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410566801
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31170
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14122070
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419518858
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557764
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15051
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419548998
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23969

Total number of triples: 42.