http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0606813-A2

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e757fd4fedc4fe825bb81b1b466a0947
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10S148-105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12528
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H05K3-244
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-0002
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12743
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L2924-09701
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-1275
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12882
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12819
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12806
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12875
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12861
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-1291
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12903
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y10T428-12896
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H05K3-143
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C23C14-042
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L23-498
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L21-4846
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L23-49811
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L23-49866
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L23-498
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-203
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C28-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H05K1-09
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C23C14-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H05K3-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H05K3-24
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L23-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L21-52
filingDate 1993-11-19-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_604555ad88fc9f06596b0bf96a578b10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1b5cfad962e3f7a94e3e243470b3712f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5976acf111890c250343a06e847f9156
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_17a8889674c91044d451131e1a43c2b2
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_39fc164d44bf863cdcca4857cd08b64e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_920540bf8d7eedbf3344d22972c4c411
publicationDate 1994-07-20-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-0606813-A2
titleOfInvention Process for corrosion free multi-layer metal conductors
abstract A thin-layer metallization structure in which the final gold layer is deposited by evaporation with the surface onto which it is evaporated maintained at an elevated temperature. The thin-film metallization pad structure is deposited onto a substrate (12), typically made of a ceramic or glass-ceramic the assembly mask through opening (23) of a metal mask (24). The assembly mask substrate is placed in an appropriate evaporation system which is pumped down to about 0,13 10 ⁻³Pa and heated to about 200° C for 15 to 30 minutes in order to outgas the assembly. In turn, the substrate is heated to 150° centigrade and an adhesion layer such as 20 nm layer (11) of chromium is deposited. Next, a cushion layer (13), such as copper, and a diffusion barrier layer (15), such as titanium, are deposited sequentially still by evaporation as the subtrate cools from the initial temperature of 150° C to about 100° C. The copper layer (13) is about 6 microns thick and the titanium layer (15) is about 1 micron thick. Now, the substrate is reheated to 200° C and a gold layer (17') of about 1 micron thick is deposited by evaporation onto the structure. The heat is then turned off and the assembly allowed to cool to 50° C or less. The gold layer (17)' encapsulates the underlying multi-layer structure to prevent oxidation and diffusion of copper and in turn, prevent corrosion. By evaporating the gold layer at an elevated substrate temperature, the gold atoms have a higher mobility, so that the gold is spread over the edges of the structure for perfect coverage thereof.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/DE-102004036140-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-0122786-A1
priorityDate 1992-12-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-8101079-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/DE-2546871-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/DE-3029277-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0215557-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-4077854-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID482532689
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23985
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID418354341
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID431905109
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23978
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23976
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419405613
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID154082419
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458391465
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23932

Total number of triples: 64.