http://rdf.ncbi.nlm.nih.gov/pubchem/patent/EP-0307451-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_e08fd85d97265d6c31ab40f372843d81
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01J3-4338
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01T1-2907
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-6402
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01J3-433
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01T1-29
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-64
filingDate 1988-01-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b74b419e90033d2105a43cc71b5d8b87
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3cdbe595336bb6a0453cca591fb8ee34
publicationDate 1989-03-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber EP-0307451-A1
titleOfInvention DEVICE AND METHOD FOR LOCATING THE DIRECTION OF AN ATOMIC JET.
abstract Systems and methods for determining the angular direction of an atomic beam (2) with respect to the reference axis (4) of the beam. For an atomic beam of non-relativity, a pair of laser beams of equal frequency and opposite propagation (6 and 8) intersects the atomic beam at a known angle with respect to the reference axis (4), preferably perpendicular. The direction of the atomic beam is deduced from the frequency difference between the resonant peaks in the fluorescence of the laser beam by scanning the laser frequency. For a relativity atomic beam, a pair of laser beams (46 and 48) intersects the atomic beam at different locations at equal predetermined angles. The direction of the atomic beam is determined by observing the difference between the resonant absorption peaks in the intensities of the transmitted laser beam (38), the frequencies or the angles of the laser beam (38) between the atomic beam and the laser beam ( 38) being preferably selected to minimize the widths of the resonance peaks. In both cases of relativity and non-relativity, an FM derivative spectroscopy technique is used, whereby the derivatives of the intensity signals of the laser beam are obtained, and the zero point crossings of the derivative signal are used from so as to precisely locate the peaks of resonance intensity.
priorityDate 1987-03-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226405879
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226397242
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID226410253
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24524
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID4270
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5372477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5054
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559511
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6433
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID4270

Total number of triples: 26.