http://rdf.ncbi.nlm.nih.gov/pubchem/patent/DE-102021110491-A1

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_63c90ac1a899bf69958e2a7dfa34c12f
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L2240-443
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-72
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02T10-7072
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W20-15
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2540-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-1005
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-083
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L2250-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-021
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-065
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-0644
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2510-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2050-0297
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L2240-423
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W10-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2530-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2720-106
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2510-0657
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2710-0627
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W2030-1809
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L3-0061
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L58-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L15-2009
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L15-2054
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L50-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L7-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60K6-52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L3-0046
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L3-003
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L50-60
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W10-115
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W10-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W10-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60K6-48
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W30-18127
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W10-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60L7-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W20-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B60W20-40
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W20-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W20-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W10-101
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60K6-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W50-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60K6-52
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W10-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W10-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W10-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60K6-42
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W30-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B60W50-02
filingDate 2021-04-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4807adcca02f30ddcac3f5492aacef88
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c3a4e8be70033bddcb1ea22aa00d2ede
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1bdaf2c28dfb0211cf17ad883a57a9c8
publicationDate 2022-03-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber DE-102021110491-A1
titleOfInvention OPTIMIZED REGENERATIVE BRAKING FOR HYBRID ELECTRIC VEHICLE (HEV) POWERTRAIN CONFIGURATION
abstract Hybrid electric vehicle (HEV) powertrains and control logic for optimized regenerative braking (regen), methods for manufacturing/application of such systems and HEVs with increased regen through reduced engine and transmission friction are presented. A method of operating an HEV includes determining whether an HEV operating condition or fault is preventing initiation of regeneration control operation and, if not, reactively determining whether a torque request for the HEV's powertrain is less than a road load of the HEV. The regeneration control operation is performed in response to the torque request being less than the road load. The regeneration control operation involves the powertrain drivingly disconnecting the engine from the road wheels and the engine operating at a target engine speed. A negative torque offset to maintain a vehicle deceleration rate after disconnecting the engine from the road wheels is calculated; the traction motor outputs a negative torque based on this negative torque offset.
priorityDate 2020-09-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID417109324
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID612

Total number of triples: 70.