http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114899391-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_5b21ae9e584a5d06464f0ef3e76ea14a
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M2004-021
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M2004-028
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-61
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-80
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2006-90
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B1-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G53-42
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C30B29-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G53-50
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G53-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B1-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C30B29-22
filingDate 2022-04-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_98b2d05042f89cc8550f337cf5ad22a7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3bf0eeb67a7fff36ef49d1c7aca7ecbf
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_9ecf2fe94d58ab677413af7899a166d3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ab92c9b9cc616014a54802cae7aeb042
publicationDate 2022-08-12-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114899391-A
titleOfInvention Ultra-high nickel single crystal cathode material and preparation method thereof
abstract The invention discloses an ultra-high nickel single crystal positive electrode material and a preparation method thereof. LiNi x Co y M 1-x-y O 2 is synthesized by using a solid-phase method step calcination combined with a step lithium supplement technology; The platform has a shorter calcination time, which can realize the nucleation and rapid growth of single crystal particles under a relatively short high temperature calcination platform, forming a framework of ultra-high nickel single crystal materials, while avoiding the occurrence of lithium evaporation caused by excessive high temperature calcination time The phenomenon of depletion of lithium can solve the problems of serious Li + /Ni 2+ cation mixing, increase of lattice oxygen defects and volatilization of lattice lithium in ultra-high nickel single crystal cathode materials. Suppress the mixing of Li + /Ni 2+ cations caused by high temperature synthesis, effectively reduce the residual alkali on the surface, and improve the discharge capacity and cycle stability of the material; this process is fully compatible with existing production line equipment, and can effectively achieve ultra-high nickel single crystal products cost reduction iteration.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-116282215-A
priorityDate 2022-04-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458403899
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID157978485
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3474584
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID425836335
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11125
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453918477
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10129889
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454294634
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID168937
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449102015
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID68383
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453940457
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447822740
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID166630
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449664606
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61534
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448676708
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547

Total number of triples: 60.