http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114883569-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_c7f1d42be99d6faf9484e9f8d7212cef
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E60-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M2004-027
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M2004-021
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-386
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-625
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-628
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-0525
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-38
filingDate 2022-07-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1496ee614a55c2b320070826d0264995
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fe79f520b8fb95f417272557a76e5c8c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2dac0f63068ea402614d3266f4e11474
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5602a5293c5443482c5a319aeff3bd9e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2314faa0c50414763214bb26d122a2fd
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_0beddb6e27178fb259d521352c62203c
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_aab710f2702462d4e0d1c712e0a46882
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_46dbcb581109a0b073ba626b80b63e40
publicationDate 2022-08-09-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114883569-A
titleOfInvention A kind of preparation method of Fe-doped Si/C composite material for negative electrode of lithium ion battery
abstract The invention relates to a preparation method of Fe-doped Si/C composite material for lithium ion battery negative electrode, and belongs to the technical field of lithium ion battery negative electrode material. The technical scheme of the present invention uses ZIF-8 as the substrate and adopts a new strategy based on "competitive coordination of framework metals" to realize the rapid doping of Zn and Fe; ZIF-8 undergoes high temperature pyrolysis above 900° C. Evaporation in the form of vapor forms nanopores, and the abundant pore structure can provide sufficient electrode/electrolyte interface, promote effective contact between electrolyte and Si nanoparticles, accelerate the penetration of electrolyte, and reduce the diffusion distance of lithium ions to improve lithium ions of storage. Compared with the prior art, the method of the present invention does not need to be treated with acid after calcination, which simplifies the operation, and the prepared negative electrode material can effectively improve the capacity exertion and cycle life of the material, improve the first efficiency, and improve the electrochemical performance. .
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115353091-A
priorityDate 2022-07-06-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/WO-2012138750-A2
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2007207381-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/US-2013337323-A1
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114628695-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491870
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11192
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6973600
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24826
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419553602
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546850
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527028
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451518796
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449957047
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID887
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1474
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID28486
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24518
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453696960
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID413422671
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3007855
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID101615372
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID426125693
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419503349
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24424
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411501921
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID795
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID171450
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID408271913
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID420207592
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1349907
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453265332
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452506218
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451326926
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24380
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8471
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11107
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411932836
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25251

Total number of triples: 71.