http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114867839-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_465b607edb4c88aeefb4958e154efaec
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N2533-90
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N2531-00
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N5-0656
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M23-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N5-0688
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M41-26
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M41-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N5-069
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M29-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N5-0062
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N5-0068
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M21-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M23-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M25-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12M25-16
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12M1-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12M1-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12M3-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12M1-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N5-071
filingDate 2020-09-29-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_34fa9864c2c56a46a29bafdf9005efb5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_69b0d4e24b85b96b571d797de5a51ee7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_61c41c1842cd174c983cbca4085c6f5b
publicationDate 2022-08-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114867839-A
titleOfInvention Microfluidic system that mimics lung tissue
abstract The invention discloses a bionic system for simulating lung tissue, a manufacturing method thereof, and a method for controlling microfluid by using the bionic system, wherein the bionic system comprises lung epithelial cells, lung fibroblasts and human umbilical cells isolated from human lungs Venous vascular endothelial cells, and perfused with microfluidics. The chambers inside the system can be perfused with gas and fluid including culture medium, respectively, and similar respiration motion can be simulated, even after more than a week after perfusion with the fluid, the three kinds of cells in the system can survive. In addition, the pH and pO 2 in the chamber can be monitored using the pH measuring sensor and the gas partial pressure measuring sensor inside the system, so that the three kinds of cells inside the system are exposed to the external environment under the same conditions as in vivo lungs or drugs, etc. As a result, research in a wide range of fields including lung disease modeling caused by harmful substances, pharmacodynamic testing of therapeutic drugs, etc. can be realized, and further, it can be applied to in vitro disease modeling and customized drug prescription.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-115786245-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114703139-A
priorityDate 2019-09-30-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10815
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ28810
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID403026
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID22370
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP08776
http://rdf.ncbi.nlm.nih.gov/pubchem/anatomy/ANATOMYID9793
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID7448
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP04985
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419514322
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID29169
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/taxonomy/TAXID9793
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID25043
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ6NWF6
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP05787
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID57449
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP29788
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0HJD2
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCF7CQ66
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID33727
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP05786
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP48819
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ10758
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCC0HJC5
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO01945
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID2006
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ5K2N3
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA0A6I8QFJ3
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCA1Z877
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCI3L638
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP15502
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID507525
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID397192
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ3T478
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP07916
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ99372
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID103183906
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP54320
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCQ3ZBS7
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP11547
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCO12945
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP22458
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP04004
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557733
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP11679
http://rdf.ncbi.nlm.nih.gov/pubchem/protein/ACCP86247
http://rdf.ncbi.nlm.nih.gov/pubchem/gene/GID13717

Total number of triples: 81.