http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114678546-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_6ac5061a4b9d6cda949b02e71044b255
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M4-9016
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M4-90
filingDate 2022-03-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2737b04e310ee936f37e9790e5109268
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6336c28ce0939ff65b5adef39f5f1d0e
publicationDate 2022-06-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114678546-A
titleOfInvention A kind of preparation method of oxygen evolution catalyst
abstract The invention relates to the fields of catalysis and nanomaterials, and can be applied to metal-air batteries (such as zinc-air batteries, etc.) and fuel cells. Synthesized by co-precipitation method and simple hydrothermal method, firstly obtain manganese dioxide precursor by co-precipitation method and high temperature calcination, then add nickel nitrate hexahydrate and ferric nitrate nonahydrate through hydrothermal reaction to obtain the final catalyst: manganese dioxide /NiFe double hydroxide composite catalyst material. The preparation process of the catalyst is simple, and the required raw material reserves are abundant and the price is low. It shows excellent performance as a catalyst for oxygen evolution reaction. The oxygen evolution performance of the catalyst was tested in 0.1M alkaline potassium hydroxide solution, and the nano-cobalt disulfide/carbon composite catalyst material had a smaller overpotential (190mV) than the noble metal catalyst.
priorityDate 2022-03-03-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID451867047
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25736
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14801
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16211566
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID177577
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6547
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61630
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10480
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449779460
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450181837
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID452862991
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID961
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559568
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447631851
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453265332
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID431906088
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25251
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457706951
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410697574
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14797
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414859283

Total number of triples: 45.