http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114655969-B

Outgoing Links

Predicate Object
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02W30-84
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01M10-54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01B25-375
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01D15-08
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01M10-54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01D15-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01B25-37
filingDate 2022-03-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
grantDate 2023-01-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationDate 2023-01-31-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114655969-B
titleOfInvention Method for preparing lithium carbonate and iron phosphate by recycling highly heterogeneous lithium iron phosphate positive electrode waste
abstract The invention relates to a method for preparing battery-grade lithium carbonate and iron phosphate by recycling high-heterolithic lithium iron phosphate positive electrode waste, and belongs to the field of solid waste recycling and resource utilization. The present invention aims at lithium iron phosphate positive electrode wastes containing high aluminum and high copper impurities, by adding iron or copper chloride in the air water immersion process, to realize efficient selective leaching of lithium and synchronous leaching of impurity aluminum; The iron and phosphorus slag is leached with acid solution to extract iron and phosphorus, and the leaching solution is used for deep removal of copper, nickel, cobalt, etc., and the purified solution is directly evaporated and crystallized at 100°C without adjusting the pH to obtain ferric phosphate dihydrate. The gas produced by evaporation and crystallization is condensed and mixed with the crystallization mother liquor to carry out acid leaching for the next batch of iron and phosphorus slag to realize recycling. The method realizes the high-value recovery of lithium iron phosphate positive electrode waste containing high aluminum and high copper impurities, and has the advantages of high recovery rate of valuable metals, good product quality, low cost, and environmental friendliness.
priorityDate 2022-03-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113443640-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-112142077-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113802002-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449015670
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24380
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412550040
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448098817
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24014
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID411550722
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104730
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24404
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25519
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24861
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458391437
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5359268
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID944
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559357
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11125
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23978
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557048
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID412584819
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10340
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546721
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1004
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449170258
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID15320824
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14804
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID935
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453918477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453219578
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453553186
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1118
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3028194
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527028
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID449367118
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25515
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559532
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID117803
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559587
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415818232
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491804
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID418354341

Total number of triples: 62.