http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114621875-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_53b4d53983adbf56dd0e7d0bf96f8ce5
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2101-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02A50-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2209-06
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F3-322
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12N1-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C12P19-04
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F101-16
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12R1-89
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F3-32
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12P19-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C12N1-12
filingDate 2022-04-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7b615f6b1adb1fb044e8d83137f371fb
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_83ace90a70d8c46d8a401d509f2ef620
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_16ad44fddd9657126cbffb1a4915892b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2461fa265f5dacf324ffc3605459232e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_17389ef59f2107ec46c52a633eb0c1db
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cf0a3b54a5ba83777add24e9409b6e2c
publicationDate 2022-06-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114621875-A
titleOfInvention A method of utilizing microalgae photoautotrophy to remove ammonia nitrogen and co-produce high amylose starch
abstract The invention discloses a method for utilizing microalgae photoautotrophy to remove ammonia nitrogen and co - produce high amylose starch. pH, maintaining photosynthetic activity promotes the absorption of ammonia nitrogen by microalgae and the accumulation of high amylose starch. When the ammonia nitrogen concentration is less than 100mg/L, the ammonia nitrogen removal rate of the system is 100%, and the ammonia nitrogen absorption rate is up to 57mg /L / day; The highest total starch content reaches 20.45-37.50% of the dry cell weight, the total starch concentration reaches 0.64-0.96g/L, and the amylose concentration reaches 0.36-0.48g/L. Compared with the high-amylose starch produced by the existing microalgae, the total starch content is increased by a maximum of 70.4-212.5%, wherein the amylose content is increased by 38.8-157.5%, and the total starch concentration is increased by 60-140%. In addition, the Am / Ap can be controlled by adjusting the concentration of carbonate and harvesting time, and the directional production of different grades of high amylose starch can be achieved, and the highest microalginate consisting almost entirely of amylose can be obtained.
priorityDate 2022-04-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID222
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6857397
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558213
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419556970
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419554224
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID70807
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID407832258
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID67235
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID947
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6049
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID11029
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579030
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419485087
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453467280
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24480
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419550829
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415966237
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454570538
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559376
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID19660
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID769
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448315045
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8759
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID439207
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10112
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID516892
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID453034310
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454515022
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415736120

Total number of triples: 58.