http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114538501-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_d2d422b9357e5be60f36faf00a3ae5be
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-64
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02W10-37
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-80
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2305-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2305-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2002-72
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01P2004-04
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2101-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2101-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2101-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2101-38
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-004
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F1-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J23-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J20-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J35-023
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01J20-28007
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C01G19-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F1-281
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F101-22
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F101-34
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F101-38
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J20-28
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J35-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J20-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J23-14
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C01G19-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y40-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B82Y30-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01J20-06
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F1-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F1-28
filingDate 2022-03-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d71c2944d5286e30faa52a84e86c7de1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_6184b266a346644af8c755e8563cc611
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f9e1b7b02d8bd049c98671902dda35ff
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_513c4928a2e45c8b687e37c462369404
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3a3d56bb1e6a262647f5db3e6a5116d7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e595cdc1cf72da905532f18627824193
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_34a610596d383d92e7b2521a7210565c
publicationDate 2022-05-27-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114538501-A
titleOfInvention Preparation method of SnO2 nanomaterial with oxygen vacancy defect, SnO2 nanomaterial with oxygen vacancy defect and use method
abstract The invention discloses a SnO 2 nanomaterial with oxygen vacancy defect, and a preparation and use method thereof. The invention adopts Sn 2+ as a tin source, and partially oxidizes it to Sn 4+ through a hydrothermal process at low temperature. 2 Oxygen vacancy defects are introduced into the lattice. The oxygen vacancy-deficient SnO 2 obtained by the present invention exhibits good performance when applied to adsorption and photocatalysis. Due to the existence of oxygen vacancies, it has a wider photoresponse range, stronger photo-generated electron and hole separation efficiency, and higher photocatalytic efficiency. There are many surface adsorption and redox reaction active sites, which can play a role in environmental remediation. The adsorption efficiency of methyl orange is 43.4%, and the degradation efficiency of methyl orange under simulated sunlight for 6 min is as high as 98.0%. ) adsorption efficiency was 78.0%, and the reduction efficiency of Cr(VI) under simulated sunlight for 4 min was as high as 98.3%. The oxygen vacancy-deficient SnO2 nanomaterial of the present invention is a photocatalyst integrating excellent adsorption and photocatalytic activity, which has excellent adsorption and photocatalytic performance and can be applied to multiple scenarios.
priorityDate 2022-03-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2014125379-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448924711
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24602
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23673835
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61436
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID702
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104883
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447740608
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559557
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419524915
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419578742
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5352426
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559573
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5284466
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID407275646
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419538410

Total number of triples: 69.