http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114217200-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_82e542fe1cfd401041ced3227d553cbd
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01R31-2601
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01R31-26
filingDate 2021-12-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b60683661ec37f5193435795359c8129
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_18b8f52dc4c1d0f47a5351d2610b570a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_c739d1ff7a29125e6c6bd079d051ec19
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_407f93702ae05562f6848e675b7bb1c6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4369ad008ddaa5cb0a17aacc89916883
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2b5e9f190bf0a50adc520a28b4065b85
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_07ce9baf82583c3390ae72653df7dee1
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_e4583d0d14cf2b660135b5c7630ac105
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_866be70f1c803cb6e3153670b1373a4a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7121a92405bfcabf9caca1629873ef33
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3eac296cc72bf737ca3e3f2e3669d48d
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_fecc86ee5e2e5e605695604f45ff3fdd
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d02eabd3a8ca0bc0e6848b3887275f30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_1ce327bfa7e9042052d23da11c3b8140
publicationDate 2022-03-22-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114217200-A
titleOfInvention Performance prediction method and device of N-polarity III-group nitride semiconductor device
abstract The invention discloses a performance prediction method and a device of an N-polarity III-group nitride semiconductor device, wherein the method comprises the following steps: obtaining the thickness of each layer and the components of each layer of a device to be predicted; determining heterojunction interface polarization charges in the device to be predicted according to the thickness of each layer and the components of each layer; determining the cooperative corresponding relation between the static performance of the device to be predicted and the polarization charges of the heterogeneous interface based on the characteristics of the interface and the internal electric field of the device to be predicted; acquiring the barrier height of each channel top interface in a device to be predicted; and determining the static performance of the device to be predicted according to the heterojunction interface polarization charges, the barrier height of each channel top interface, the components and the thickness of each layer and the cooperative corresponding relation. The method can calculate the 2DEG concentration and the barrier height of the N-polarity (III-group nitride) HEMTs structure, predicts the generation of 2DHG, and is helpful for understanding the principle of the N-polarity multi-channel HEMTs and guiding the manufacture of the devices.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114749744-A
priorityDate 2021-12-10-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31170
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419557764
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579069

Total number of triples: 28.