http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114191989-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a4e418a1fcaf49f89e778a1b0ca9e593
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2325-30
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D67-0011
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D61-027
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-125
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D67-0006
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D67-0013
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D67-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D61-02
filingDate 2021-12-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3b16107556055a79af536b0d9d21b677
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_358c89c6691c6982c0c86a0ae3287be6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_a6b61d83343188cedbdfc9a61f7d2d69
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_626e8b4df33e1fe8c1ff583812f5aded
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7e86de278289f5f5714291e60d0f2bf5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f9b77d64118c1d92a897c5675d107f8e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_8bbdad3b64a80e878db1a940f2bfb123
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_464278d5271ef9b855bed84b12c4196a
publicationDate 2022-03-18-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114191989-A
titleOfInvention Preparation method of strongly-combined double-layer nanofiltration membrane
abstract The invention discloses a preparation method of a strongly-combined double-layer nanofiltration membrane, which comprises the following steps: firstly, carboxyl-terminated SMA macromolecules are obtained, and then carboxylated SMA and a polymer film material are blended to form a homogeneous film casting solution; step two, preparing the casting solution into a surface carboxylation ultrafiltration membrane material by using a phase inversion method; adding a polyhydroxy polymer on the surface of the surface carboxylation ultrafiltration membrane material, and performing esterification reaction on the polyhydroxy polymer and carboxyl to obtain a single-layer structure nanofiltration membrane; and step four, adding a linear diacyl chloride monomer on the surface of the nanofiltration membrane with the single-layer structure for secondary crosslinking to obtain the strongly-combined double-layer nanofiltration membrane. The method has the characteristics of simple and convenient operation, strong binding force between the composite layers of the prepared nanofiltration membrane, excellent separation performance and the like. Compared with the traditional interfacial polymerization method for preparing the polyamide nanofiltration membrane, the method can obtain the nanofiltration membrane with the surface having the double-layer separation structure through secondary reaction. The product obtained by the method has the characteristics of excellent permeability, good chlorine resistance and high pressure resistance.
priorityDate 2021-12-01-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559065
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID312
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8058
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419490115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID31374
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID66072
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID10970
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410534446
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6228
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414880200
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID471480419
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16551
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419487106
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458397365
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID61034
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410497962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559516
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14798
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559517
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID164992711
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID409060395
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419525361
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID313
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962

Total number of triples: 52.