http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114018860-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_a7a924cf7cc8ff66cba8fe78facf87dc
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N2201-129
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-359
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06N20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-24323
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-2135
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G06F18-214
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G01N21-3563
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16C10-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16C20-70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/G16C20-30
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G16C20-70
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G16C10-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06N20-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G06K9-62
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-3563
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G16C20-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/G01N21-359
filingDate 2021-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_30d8c60cc20dc770730e3ce6c688af5b
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_ee06504697544af80158d586939175cb
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_3bfa5dc73473b8f07b4d63184c170895
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_62e6b69377bef3d70c1a20b3970e0f9f
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_cb84de5952266fac0266f962e3038ca3
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_dcf537e639e4d1e2ebf2c0c0a8059151
publicationDate 2022-02-08-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-114018860-A
titleOfInvention A detection method for Xanthium adulteration by near-infrared spectroscopy and GBDT algorithm
abstract The invention discloses a rapid detection method applied to authentic Chinese medicine cocklebur and counterfeit cocklebur with highly similar properties. The near-infrared spectrum of the sample is collected, the sample spectrum is scanned, and the spectral data is preprocessed by first-order derivation, vector normalization, filtering and smoothing, etc., to extract the principal component information that represents the sample to the greatest extent, and the GBDT algorithm is used to construct a rapid analysis Prediction model of genuine cocklebur, adulterated Mongolian cocklebur, and adulterated partial base cocklebur. The detection method does not need to use a lot of reagents, is environmentally friendly, easy to operate, has good reproducibility, and has stable and accurate results. When the sample volume of Xanthium is large, it can realize rapid online detection and real-time evaluation feedback, which is beneficial to the production and processing of Xanthium Realize rapid monitoring and evaluation of Xanthium quality in the whole process of production, circulation and consumption.
priorityDate 2021-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415006318
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2153

Total number of triples: 33.