http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113967112-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_70a57471adb10e40785c3c694e731ea8
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L2300-42
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61F2240-001
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L2430-40
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L2300-236
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-18
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B33Y80-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61F2-82
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/A61L27-54
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61F2-82
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-58
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-54
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B33Y80-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/A61L27-18
filingDate 2021-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_87f4dc193f458b544e848476ffa601b6
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_2ecd2aef8c5269f7c0863d9686400599
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_80cb75f7e422ee4975518e9987437fa7
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_01412637865534dac7d748c931fffd0e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_16a6281d558641b98f342de873cdb908
publicationDate 2022-01-25-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113967112-A
titleOfInvention Preparation method of 3D-printed intravascular absorbable stent with anticoagulation function
abstract The invention relates to a preparation method of a 3D printing intravascular absorbable stent with an anticoagulation function. The method comprises the following steps: heating and melting polycaprolactone, adopting a 3D printing melting deposition manufacturing process to aminate the surface of the obtained polycaprolactone vascular stent, then soaking the polycaprolactone vascular stent in a heparin solution for grafting, and freeze-drying. The method can rapidly, accurately and controllably obtain the stents with various specifications according to different required inner diameters and lengths, and has important application in the field of interventional medical treatment; the prepared stent has better mechanical property, bending resistance, biocompatibility and anticoagulation function.
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-114652902-A
priorityDate 2021-10-15-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458396401
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414784756
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419513958
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID284
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16402
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID407631466
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID80170
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448670727
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID22833565
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419485540
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID2723939
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419517463
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3776
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID448844975
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5234

Total number of triples: 45.