http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113755871-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_90b010c240151ea86e7e95b7d03fab5a
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C25B11-042
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C25B11-042
filingDate 2021-10-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_aebcd35e760df5eaeafb27d33d46114e
publicationDate 2021-12-07-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113755871-A
titleOfInvention Preparation technology of highly active lead dioxide anode for electrolysis
abstract Preparation technology of highly active lead dioxide anode for electrolysis. The inert anode materials currently used in electrolysis are too limited. The cost of platinum is too high; the graphite has low strength and poor corrosion resistance; the lead alloy anode has poor corrosion resistance, low electrocatalytic performance, and large power consumption; lead dioxide anode is composed of three parts: titanium matrix, bottom layer, and surface active layer. It is an oxide of a precious metal, and the surface active layer also contains two kinds of lead dioxide with different electrical conductivity, which makes the lead dioxide anode have the disadvantages of uneconomical, poor electrical conductivity and short life. The lead dioxide anode obtained in this technology has only highly active lead dioxide and a matrix, and the matrix is ordinary iron or commonly used steel. It has the characteristics of good corrosion resistance and can pass large current, and is suitable for electrolysis, electroplating, electrosynthesis and electric heating of all aqueous solutions, which is the biggest bright spot of this anode.
priorityDate 2021-10-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23963
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID84979
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579080
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID14793
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559357
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID84927
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458431511
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID454270067
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559477
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419491185
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23939
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23925
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID410627549
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID516900
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID414876161
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6590
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID16683880
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419579079
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559581
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID944
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419527289

Total number of triples: 35.