http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113690327-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_f90c1df3857ee72900e0015c75caecd9
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02E10-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02P70-50
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-204
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/H01L31-02167
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L31-20
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/H01L31-0216
filingDate 2021-09-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_68aa2835936dbd33ab63cae2bf061449
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_7c548f71b8bb8a97087f793c74ad3258
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_5660a80e3f303df7ba0508f2c16755c0
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_4b490b75d69fb16d2cbbeb5ec7beeb7e
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_38eb0ca96e6f4c487a0248c278767641
publicationDate 2021-11-23-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113690327-A
titleOfInvention Silicon oxide/wide-band-gap polycrystalline silicon alloy passivation contact structure and online continuous preparation method thereof
abstract The invention discloses a silicon oxide/wide band gap polycrystalline silicon alloy passivation contact structure for improving the performance of a crystalline silicon solar cell and an online continuous preparation method thereof. The passivation contact structure comprises an ultrathin tunneling silicon oxide layer with a passivation function and a wide-band-gap polysilicon alloy layer with a field passivation function. The specific preparation process comprises the following steps: 1) putting the sample after cleaning and texturing, front boron diffusion and rear polishing into a PECVD chamber, and only introducing oxygen-containing gas to perform plasma on-line oxidation to prepare an ultrathin tunneling silicon oxide layer; 2) introducing corresponding gas to deposit the doped amorphous silicon alloy layer; 3) and putting the sample into an annealing furnace for annealing to obtain the silicon oxide/wide band gap polycrystalline silicon alloy passivation contact structure. The silicon oxide/wide band gap polycrystalline silicon alloy passivation contact structure disclosed by the invention is continuously prepared on line in the same PECVD (plasma enhanced chemical vapor deposition) equipment, so that interface pollution caused by atmosphere exposure is avoided, the production efficiency is improved, and the performance of a crystalline silicon solar cell is improved.
priorityDate 2021-09-14-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546674
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559484
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID68979
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24261
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419520721
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID455667478
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID455728551
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419583196
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457773519
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559542
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6325
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559585
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457698762
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID977
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559541
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419510966
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID948
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419559549
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419548998
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419543920
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID24404
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419539344
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23953
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID457707758
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5461123
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458392875
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID3609161
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458392451
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID458434260
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID104727
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID280
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID74123
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID5462311
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6356
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID297
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID139070
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419523291
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID23969

Total number of triples: 57.