http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113441020-A

Outgoing Links

Predicate Object
assignee http://rdf.ncbi.nlm.nih.gov/pubchem/patentassignee/MD5_879f173a4a6b0a1434142c8735b69cb2
classificationCPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D61-027
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2323-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-68
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2323-50
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/Y02A20-131
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2325-36
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2103-08
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-024
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F2103-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D2325-023
classificationCPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D61-027
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/C02F1-442
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-56
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D67-00793
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D67-0079
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-1251
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-148
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D71-60
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentcpc/B01D69-108
classificationIPCAdditional http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F103-30
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F103-08
classificationIPCInventive http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-12
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-10
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D69-02
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D67-00
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D71-60
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/C02F1-44
http://rdf.ncbi.nlm.nih.gov/pubchem/patentipc/B01D61-02
filingDate 2021-08-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
inventor http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b5638807793cb2e15a354ec780bae0d5
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_faee7bb06700b0c937c198206dcf9034
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_f5b39ce72a39aad05dd62a6969cbabf4
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_16c6b738f61b1e80efaf1423d344e169
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_18abf9b88d90bae295317179c3911683
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_d2015cc052176eef876ba835d3435b5a
http://rdf.ncbi.nlm.nih.gov/pubchem/patentinventor/MD5_b1f44a2b219dce5b743162af7222bd2c
publicationDate 2021-09-28-04:00^^<http://www.w3.org/2001/XMLSchema#date>
publicationNumber CN-113441020-A
titleOfInvention A composite nanofiltration membrane and its preparation method and application
abstract The invention belongs to the technical field of nanofiltration membranes, and in particular relates to a composite nanofiltration membrane and a preparation method and application thereof. The composite nanofiltration membrane provided by the present invention includes a base layer, a base membrane layer and a polyamide separation layer that are stacked in sequence; the base membrane layer includes a polysulfone membrane and molybdenum disulfide oxide dispersed in the polysulfone membrane; The polyamide separation layer is prepared from an aqueous phase solution and an oil phase solution through in-situ interfacial polymerization; the aqueous phase solution contains piperazine, and the oil phase solution contains trimesoyl chloride. Molybdenum disulfide oxide has hydrophilicity and negative charge, which increases the efficiency of water passing through the composite nanofiltration membrane, and generates electrostatic repulsion between the surface of the composite nanofiltration membrane and pollutants, which improves the anti-pollution performance of the surface of the composite nanofiltration membrane. In the present invention, the polyamide separation layer obtained by the in-situ interface polymerization reaction has higher compactness, thereby improving the removal rate of the composite nanofiltration membrane.
priorityDate 2021-08-05-04:00^^<http://www.w3.org/2001/XMLSchema#date>
type http://data.epo.org/linked-data/def/patent/Publication

Incoming Links

Predicate Subject
isCitedBy http://rdf.ncbi.nlm.nih.gov/pubchem/patent/JP-2010137192-A
http://rdf.ncbi.nlm.nih.gov/pubchem/patent/CN-113041847-A
isDiscussedBy http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID6228
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419546724
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID450013327
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID8058
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID415764472
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID431940391
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419483452
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419487106
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419558806
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419537701
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419490115
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID78138
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID25473
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID962
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID447756586
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID1030
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID419512635
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID4837
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID154099458
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID12961636
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID13387
http://rdf.ncbi.nlm.nih.gov/pubchem/substance/SID416290180
http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID753

Total number of triples: 72.